
Interpreting Galaxy Deblender GAN from the
Discriminator’s Perspective

Heyi Li1, Yuewei Lin2, Klaus Mueller1, and Wei Xu2

1 Stony Brook University, Stony Brook NY 11790, USA
{heyli,mueller}@cs.stonybrook.edu

2 Brookhaven National Laboratory, Upton NY 11973, USA
{ywlin,xuw}@bnl.gov

Abstract. In large galaxy surveys it can be difficult to separate over-
lapping galaxies, a process called deblending. Generative adversarial net-
works (GANs) have shown great potential in addressing this fundamental
problem. However, it remains a significant challenge to comprehend how
the network works, which is particularly difficult for non-expert users.
This research focuses on understanding the behaviors of one of the net-
work’s major components, the Discriminator, which plays a vital role
but is often overlooked. Specifically, we propose an enhanced Layer-wise
Relevance Propagation (LRP) algorithm called Polarized-LRP. It gen-
erates a heatmap-based visualization highlighting the area in the input
image that contributes to the network decision. It consists of two parts
i.e. a positive contribution heatmap for the images classified as ground
truth and a negative contribution heatmap for the ones classified as gen-
erated. As a use case, we have chosen the deblending of two overlapping
galaxy images via a branched GAN model. Using the Galaxy Zoo dataset
we demonstrate that our method clearly reveals the attention areas of
the Discriminator to differentiate generated galaxy images from ground
truth images, and outperforms the original LRP method. To connect the
Discriminator’s impact on the Generator, we also visualize the attention
shift of the Generator across the training process. An interesting result
we have achieved is the detection of a problematic data augmentation
procedure that would else have remained hidden. We find that our pro-
posed method serves as a useful visual analytical tool for more effective
training and a deeper understanding of GAN models.

Keywords: Explainable AI · Galaxy image deblending · Generative ad-
versarial network · Layer-wise relevance propagation.

1 Introduction

Astronomical researchers routinely assume the strict isolation of the targeted
celestial body and so their objective is simplified into evaluating the properties
of a single object. However, galactic overlapping is ubiquitous in current sur-
veys due to projection effects and source interactions. This introduces bias to
multiple physical traits such as photometric redshifts and weak lensing at levels
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beyond requirements. With the arrival of the next generation of ground-based
galaxy surveys such as the Large Synoptic Survey Telescope (LSST) [7] which
is expected to begin operation in 2023, this issue becomes more urgent. Specifi-
cally, the increase of both depth and sensitivity will cause the number of blended
galaxy images to grow exponentially. Dawson [4] predicts that around 50% of
galaxies captured in LSST images encounter overlapping with a 3” center-to-
center distance. This leads to immense quantities of imaging data warranted as
unusable. According to the estimation in [18], up to 200 Million galaxy images
could be discarded each year if the blending issue is not effectively addressed
throughout the ten year period of the LSST survey. However, the task of galaxy
deblending remains an open problem in the field of astronomy and no gold stan-
dard solution exists in the processing pipeline. Recently, a GAN model called
Galaxy Deblender GAN [18] has been applied in solving the galaxy deblending
problem and has yielded promising results in separating confirmed blends of two
galaxies. During our discussions with domain scientists, we noticed two facts: (1)
a visual explanation can help them understand model behavior without machine
learning expertise, and (2) the behavior of the Discriminator is most perplexing
to astronomers.

The generative adversarial network (GAN) was first proposed by Goodfel-
low [5] that consists of two major components, the Discriminator and the Gen-
erator. It has achieved state-of-the-art performance in many computer vision
applications, especially in face generation [8, 9]. Many GAN variants [17, 2] have
been proposed to improve the training stability and to increase image diversity.
However, the discrepancy of a thorough understanding of GANs makes build-
ing and training GAN models extremely challenging for non-expert users. This
prohibits a wide utilization of these models and potentially prevents them from
reaching optimum performance. More importantly, the lack of interpretation
directly results in less trustworthiness in images generated by GANs.

Different visualization algorithms have been proposed to increase the inter-
pretability of convolutional neural networks (CNNs). Among them, the heatmap-
based approach that connects the input features to the classification or predic-
tion output is an emerging trend. For instance, class activation mapping (CAM)
based methods [20, 19] directly use the activation of the last convolutional layer
to infer the downsampled relevance of the input pixels. But such methods are
only applicable to specific architectures which use the average pooling layer. The
layer-wise relevance propagation (LRP) algorithm [16] is proposed to address this
issue. For each image, LRP propagates the classification score backward through
the model and calculates relevance intensities over all pixels. Although successful
in interpreting discriminative classifiers [13], the LRP algorithm does not cover
network structures like GAN models.

In this work, we propose a Polarized-LRP method extending the original LRP
in its explanation of GAN models from the Discriminator’s perspective with the
Galaxy Deblender GAN as the use case. Our method backpropagates the single
probability value given by the Discriminator to the input layer, during which it
calculates the positive or negative contributions depending on the classification
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of the input image. The generated heatmaps called relevance maps highlight
the important pixels in the input image. By comparing relevance maps of the
same input at different training stages, our method clearly reveals the gradual
changes of the Generator in response to the direct feedback from the Discrim-
inator. Moreover, we demonstrate the role of our method in model refinement
by uncovering a problematic step in data augmentation which was previously
unknown to astronomers. To the best of our knowledge, our Polarized-LRP is
the first method in the literature which can effectively visualize the behavior of
the Discriminator and its impact on the Generator.

The major contributions of our work are threefold.

– An innovative LRP algorithm i.e. Polarized-LRP to enhance the original
LRP is proposed and its superiority is demonstrated with comparison ex-
periments.

– The first work extending the LRP algorithm to explain GAN models is pre-
sented and applied to a real-world scientific problem.

– The effectiveness of our method in both training understanding and model
debugging is demonstrated with experiment results.

The remainder of this paper is organized as follows. Related works are intro-
duced in Section 2.Our new LRP method is presented in Section 3. Extensive
experiments validating the effectiveness of our method are shown in Section 4.
The conclusions and future work discussions are followed in Section 5.

2 Related Works

In this section, a detailed literature review of papers on GAN model understand-
ing is first presented. Then the Galaxy Deblender GAN is introduced serving as
our use case for the demonstration.

2.1 GAN Model Understanding

To thoroughly understand the literature, we searched all accepted papers in
the top machine learning, computer vision, and visualization conferences from
Year 2017 to Year 2019 using related keywords including but not limited to
“explain/explanation”, “visual/visualization”, and “neural network”. Then we
narrowed down our selections by examining the abstracts and excluding those
irrelevant. Table 1 summarizes our findings that there are only 44 papers fo-
cusing on explaining deep neural networks. Table 2 further shows a detailed
categorization of those found papers, where there are only two works in GAN
interpretation.

Among the limited works explaining GANs, Liu [15] designed a graphic user
interface to display connections between neurons of neighboring layers in the
model. Unfortunately, their tool is intended only for machine learning experts
and hence not supportive for non-domain researchers. Most recently, Bau [3]
presented a dissecting framework that examines the causal relationship between



4 H. Li et al.

Conference 2017 2018 2019 Focus on XAI

CVPR 783 979 1294 10
ICCV/ECCV 621 776 1077 8

NeuralIPS 678 1011 1428 8
ICML 434 621 773 9
VIS 143 197 253 9

Total 2659 3584 4825 44

Table 1. The total number of accepted papers in the top ML, CV, and VIS conferences
from Year 2017 to Year 2019. The last column shows the number of papers from each
conference that falls in the area of deep learning understanding. Papers are filtered
using keywords in titles and abstracts.

network units and object concepts. However, the Discriminator is completely
omitted in their work. Although not being used to generate images during the
inference stage, the Discriminator significantly affects the performance of the
Generator, which is important to investigate.

Network Structure Number of Papers

CNN 30
RNN/LSTM 5

GNN 2
GAN 2
Others 5
Total 44

Table 2. A detailed categorization of all selected papers on deep learning understand-
ing from Table 1. A majority of the papers focus only on CNN models. Research on
visual understanding of GAN models is largely lacking.

2.2 The Galaxy Deblender GAN

The design of the Galaxy Deblender GAN is based on the super resolution
GAN (SRGAN) [12]. The Generator consists of two branches because of the
assumption that only two galaxies co-appear in one blended image. Each branch
integrates many residual blocks and skip connections [6]. The two branches share
the first M residual blocks but hold N more distinctive residual blocks each,
where (M,N) = (10, 6). The Discriminator outputs a probability score, where
0 means a generated image and 1 represents a ground truth image captured by
the telescope.

We follow the detailed Galaxy Deblender GAN architecture in [18], build
and re-train it from scratch due to no publicly available pre-trained network.
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Raw galaxy images are open-sourced from the Kaggle Galaxy Zoo classification
challenge [14]. Both the Generator and the Discriminator are optimized using
the Adam optimizer [10]. The learning rate is initialized as 10−4 and decreased
by an order of magnitude to 10−5 after 100, 000 iterations. Then the training
stage continues for another 100, 000 iterations. One single Tesla V100 graphics
card was used for the training.

Mean PSNR(dB) SSIM

Reported 34.61 0.92
Replicated 33.47 0.89

Table 3. The replication results shown as the mean values of PSNR and SSIM metrics

Table 3 shows the reported peak noise-to-signal ratio (PSNR) value and
structural similarity index (SSIM) value along with ours. Although our values
are slightly lower than their reported ones, they are within a reasonable shift
range. Figure 1 includes one example generated using our reproduced model.

Fig. 1. One example of inputs and outputs of our replicated galaxy deblender GAN
model. The pair of ground truth images is on the left. The blended image is in the
middle. The pair of the generated images is on the right. The PSNR ratio for each pair
of the ground truth image and the generated image is shown at the bottom left corner.

3 Our Method

3.1 Polarized-LRP

As mentioned in Section 1, the LRP algorithm has not been applied to generative
models before. The root of this limitation lies in the structure of the relevance
input. The multi-class classifier’s output consists of the predicted probability for
each class. All elements in this vector are adjusted to zero except the highest
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one which represents the target class. This one-hot vector then serves as the
relevance input. In this way, only neurons connected to the non-zero elements
are activated during the backpropagation. In the original LRP algorithm, only
positive contributions are considered, which makes sense for multi-class classifi-
cations. However, the Discriminator of a GAN model only returns one probability
value indicating whether this is a generated image. Applying the LRP algorithm
directly renders all output heatmaps meaninglessly. An example showing the
limitation of the original LRP will be presented in Section 4.1.

To address this issue, our method calculates two relevance maps from the
same probability value i.e. the positive and the negative maps. The positive
relevance map displays only positive contributions from the pixels in the input
image to the probability value, while the negative relevance map shows only
negative contributions. If the image is classified as generated by the Discrimina-
tor, the negative contributions from input pixels dominate and thus decrease the
probability score. In this case, the negative relevance map is adopted automati-
cally to represent and convey the decision of the Discriminator. On the contrary,
the positive relevance map is chosen if the image is classified as ground truth.
By polarizing the relevance into positive and negative, our algorithm creates two
”virtual” classes from the Discriminator’s output probability. Equation 1 shows
the relevance computation of our proposed method.

R
(l+1)→(l)
j→i =


[wijxi]

+∑
k[wkjxk]++b+k

R
(l+1)
j , if is Ground Truth

[wijxi]
−∑

k[wkjxk]−+b−k
R

(l+1)
j , if is Generated

(1)

The weights and biases are denoted by wij and bk respectively. []
+

and []
−

represent value truncation at zero.

3.2 Demonstration Examples

We present two cases as examples of our method. The first row in Figure 2
shows the positive relevance map for a ground truth image. We choose the viridis
colormap to show the relevance map where blue indicates smaller importance
and yellow indicates higher importance. From the map on the right, we can see
that the Discriminator focuses on the interior of the galaxy ellipse. Pixels in
the attention area make strong positive contributions to the probability score,
which explains why the Discriminator classifies this image as ground truth. The
second row in Figure 2 exhibits the negative relevance map for a generated image.
The map indicates that the Discriminator makes its decision based on pixels on
the periphery of the central area, which has the most noticeable artifacts in
the image. These results are consistent with the visual inspection between the
ground truth image and the generated image by a domain expert.

4 Experiment Results

To demonstrate the effectiveness, we first compare our algorithm with the orig-
inal LRP method. Next, we compare the relevance maps of the same input at
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(a) Ground truth image (b) Positive relevance map

(c) Generated image (d) Negative relevance map

Fig. 2. The exemplar results. The first row includes an example of the positive relevance
map and the second row contains an example of the negative relevance map. All images
are enlarged to 256× 256 for a better illustration.

different training stages for the training understanding. Finally, as the usage for
the model debugging, we discover an unusual pattern that leads to the successful
diagnosis of an erroneous data augmentation procedure.

4.1 Comparison with the Original LRP

The original LRP method has been compared with other existing heatmap-based
methods such as SmoothGrad, Deconvnet, and PatternAttribution by iNNves-
tigate [1], and DeepSHAP by [13]. Both works have shown the exceeding per-
formance of LRP in explaining model predictions. Therefore, to evaluate our
Polarized-LRP algorithm, we only focus on the comparison with the original
LRP method in explaining the Discriminator of a GAN model.

Specifically, we compare relevance maps produced using Polarized-LRP and
original LRP [11] for both the ground truth image and the generated image.
Figure 3 shows one example of a ground truth image in the first row and one
example of a generated image in the second row. In the case of a ground truth im-
age, the relevance map from our Polarized-LRP presents more contrast between
dominant pixels of the galaxy area and less relevant pixels in the background
compared to the relevance map from the original LRP.

The drawback of the original LRP is more obvious in the latter case. As
is explained in Section 3.1, the original LRP method only shows pixels that
contribute “positively” to the prediction score. For a generated image, as shown
in the second row of Figure 3, the relevance map of the original LRP (Figure 3(e))
is almost identical to the map of the ground truth (Figure 3(b)), which does not
make sense to the users. The failure has twofold. On the one hand, such a score
is close to zero, which simply fails to provide meaningful feedback. On the other
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(a) Ground truth image (b) Original LRP (c) Our Polarized-LRP

(d) Generated image (e) Original LRP (f) Our Polarized-LRP

Fig. 3. The comparative study with the original LRP method. The first row displays
an example of the ground truth image and the second row includes an example of a
generated image. Each relevance map image is normalized before the visualization. All
images are enlarged to 256× 256 for a better illustration.

hand, even with the limited feedback, the highlighted pixels indicate where the
model is based on to label the image as ground truth. Apparently, to evaluate
the decision for a generated image, we instead want to learn the locations of
the unrealistic pixels that make the model prediction as generated. In contrast,
our Polarized-LRP algorithm calculates the relevance map of a generated image
based on the negative contributions as in Equation 1. Therefore, it highlights
the periphery of a galaxy where most salient artifacts can be observed. Thus our
method is clearly superior in explaining the GAN discriminators.

4.2 Training Understanding

Model weights are saved during training at an interval of 1000 iterations. After-
wards, weights at the recorded iterations are used to create complete relevance
maps for comparison.

An example of a high-quality generation is shown in Figure 4. Three iterations
are selected correspondingly at an early stage, at an approximate mid-point, and
near the end when the model converges. For the three generated images, the
Discriminator gave a score of 0.001, 0.001, 0.003. We plot their relevance maps
as to indicate why they are identified as generated. From the central image
in the first row, we can see that the Generator only manages to replicate the
inner bright spot. In the Discriminator’s relevance map, this corresponds to the
small hole in the middle. Furthermore, our relevance map on the left clearly
reveals that the low probability score by the Discriminator is mostly due to
the unrealistic-looking pixels in the surrounding areas. This information is then
passed on to the Generator as the adversarial loss penalty. As is shown in the
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images in the subsequent rows, the ring structure in our relevance map grows
thinner and darker. Along with the expansion of the central hole (meaning the
confidence area in the center of galaxy enlarges), the generated image slowly
transforms towards the ground truth image. One interesting finding is that the
Generator learns the glaring spot first and then incrementally apprehends the
surroundings. This is comprehensible because the Generator is first trained with
only the style loss from VGG19. During this so-called “burn-in” period, features
such as salient spots are expected to be grasped by the Generator. The benefit
of the style loss during the “burn-in” period is easily visualized in our relevance
map. How the Generator changes during training under the guidance of the
Discriminator is also revealed.

(a) Relevance map (b) Early stage (c) Ground truth

(d) Relevance map (e) Middle stage (f) Ground truth

(g) Relevance map (h) Final stage (i) Ground truth

Fig. 4. Three representative stages: early, middle and near-end stages are shown in
rows. The relevance maps, generated images, and grounth truth images are shown in
columns. All images are enlarged to 256× 256 for a better illustration.

4.3 Model Debugging

While analyzing the Galaxy Deblender GAN using our method, we noticed a
strange phenomenon consistently appearing in the positive relevance maps. Fig-
ure 5(a) shows the boundary of a rectangular shape in the positive relevance
map of a ground truth image. This shape only appears in the positive relevance
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(a) Relevance map (b) Ground truth (c) Contrast increased

Fig. 5. The “phantom boundary” becomes apparent when the contrast of the ground
truth image is increased. All images are enlarged to 256× 256 for a better illustration.

maps which is an important revelation as it indicates to us that the Discrimi-
nator picks up features from the ground truth images that are hidden from our
awareness. A partial decision was mistakenly made from the image background
without any footing in domain knowledge.

Further investigation revealed that this “phantom boundary” was introduced
in the data preparation stage. One image out of each blended pair was randomly
perturbed by flipping, rotation, displacement, and scaling. Then, after these op-
erations, all missing pixels in the newly created image were filled with zeros.
However, this padded true black background diverges from the near black back-
ground of the galaxy although the two seem quite alike with visual inspection.
Figure 6 shows the histogram of two different 20×20 regions in the ground truth
image, one from the galaxy background and the other from the manually padded
background.

Fig. 6. Two 20 × 20 background regions randomly selected from the ground truth
image. While they look alike visually, these two regions have very different histograms.
The ground truth image is enlarged to 256× 256 for a better illustration.

This problem had a large impact as it crippled our Galaxy Deblender GAN
model from reaching its optimum performance. Instead of capturing features
of real celestial bodies, the Discriminator learned a much simpler strategy to
manipulate the equilibrium system utilizing the “phantom boundary”. No mat-
ter how realistic the generated images look like, the Discriminator can easily
differentiate them as long as phantom boundaries are absent in the results. Al-
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though the Generator might eventually learn to generate phantom boundaries
when provided with sufficient training data and adequate update iterations, a
huge amount of efforts is wasted to chase this lost cause.

While zero-padding is a frequently used technique in image processing, many
non-domain experts are unaware of its shortcoming. Fortunately, with the help
of our proposed algorithm this problem could be detected. It can be resolved
by replacing the zero-padding with a random noise distribution obtained from
physics statistics.

5 Conclusion

Motivated by the deficiency of GAN model understanding, we propose a Polarized-
LRP technique to interpret the GAN’s Discriminator with relevance maps high-
lighting the contributing pixels in the input image. We adopt the Galaxy De-
blender GAN as a use case to demonstrate our method. By unifying the positive
and negative contributions in a single formula and visualizing according to the
prediction, our algorithm successfully reveals the decision making of the Discrim-
inator. A training understanding is demonstrated to show the Discriminator’s
role on affecting the Generator, with the connection to loss function design. A
model debugging example in uncovering a hidden mistake in the data prepara-
tion of the galaxy images is also included.

Although designed for the galaxy deblending problem, Polarized-LRP is not
restricted to this network by any means. In the future, we plan to apply our
method to interpret other well-established GAN models. In addition, we will
apply LRP to the Generator as well for a complete understanding of both GAN
components. Finally, a visual analytics system is also considered so as to facilitate
direct user interaction.
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7. Ivezić, Ž., Kahn, S.M., Tyson, J.A., Abel, B., Acosta, E., Allsman, R., Alonso,
D., AlSayyad, Y., Anderson, S.F., Andrew, J., et al.: Lsst: from science drivers to
reference design and anticipated data products. The Astrophysical Journal 873(2),
111 (2019)

8. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4401–4410 (2019)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

11. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: The lrp tool-
box for artificial neural networks. The Journal of Machine Learning Research 17(1),
3938–3942 (2016)

12. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4681–4690 (2017)

13. Li, H., Tian, Y., Mueller, K., Chen, X.: Beyond saliency: understanding convolu-
tional neural networks from saliency prediction on layer-wise relevance propaga-
tion. Image and Vision Computing 83, 70–86 (2019)

14. Lintott, C., Schawinski, K., Bamford, S., Slosar, A., Land, K., Thomas, D., Ed-
mondson, E., Masters, K., Nichol, R.C., Raddick, M.J., et al.: Galaxy zoo 1: data
release of morphological classifications for nearly 900 000 galaxies. Monthly Notices
of the Royal Astronomical Society 410(1), 166–178 (2010)

15. Liu, M., Shi, J., Cao, K., Zhu, J., Liu, S.: Analyzing the training processes of
deep generative models. IEEE transactions on visualization and computer graphics
24(1), 77–87 (2017)

16. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise
relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning, pp. 193–209. Springer (2019)

17. Radford, A., Metz, L., Chintala, S.: Progressive growing of GANs for improved
quality, stability, and variation. In: International Conference on Learning Repre-
sentations (2016)
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